Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-514722

RESUMO

Omicron BA.5 has been the globally dominant SARS-CoV-2 variant and has demonstrated substantial neutralization escape compared with prior variants. Additional Omicron variants have recently emerged, including BA.4.6, BF.7, BA.2.75.2, and BQ.1.1, all of which have the Spike R346T mutation. In particular, BQ.1.1 has rapidly increased in frequency, and BA.5 has recently declined to less than half of viruses in the United States. Our data demonstrate that BA.2.75.2 and BQ.1.1 escape NAbs induced by infection and vaccination more effectively than BA.5. BQ.1.1 NAb titers were lower than BA.5 NAb titers by a factor of 7 in two cohorts of individuals who received the monovalent or bivalent mRNA vaccine boosters. These findings provide the immunologic context for the rapid increase in BQ.1.1 prevalence in regions where BA.5 is dominant and have implications for both vaccine immunity and natural immunity.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22275151

RESUMO

Multiple lineages of the SARS-CoV-2 Omicron variant (B.1.1.529) have emerged, and BA.1 and BA.2 have demonstrated substantial escape from neutralizing antibodies (NAbs). BA.2.12.1 has now become dominant in the United States, and BA.4 and BA.5 have become dominant in South Africa. Our data show that BA.2.12.1 and BA.4/BA.5 substantially escape NAbs induced by both vaccination and infection. Moreover, BA.4/BA.5 NAb titers, and to lesser extent BA.2.12.1 NAb titers, were lower than BA.1 and BA.2 NAb titers, suggesting that the SARS-CoV-2 Omicron variant has continued to evolve with increasing neutralization escape. These findings have important public health implications and provide immunologic context for the current surges with BA.2.12.1 and BA.4/BA.5 in populations with high rates of vaccination and BA.1/BA.2 infection.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-479285

RESUMO

BackgroundThe rapid spread of the SARS-CoV-2 Omicron (B.1.1.529) variant, including in highly vaccinated populations, has raised important questions about the efficacy of current vaccines. Immune correlates of vaccine protection against Omicron are not known. Methods30 cynomolgus macaques were immunized with homologous and heterologous prime-boost regimens with the mRNA-based BNT162b2 vaccine and the adenovirus vector-based Ad26.COV2.S vaccine. Following vaccination, animals were challenged with the SARS-CoV-2 Omicron variant by the intranasal and intratracheal routes. ResultsOmicron neutralizing antibodies were observed following the boost immunization and were higher in animals that received BNT162b2, whereas Omicron CD8+ T cell responses were higher in animals that received Ad26.COV2.S. Following Omicron challenge, sham controls showed more prolonged virus in nasal swabs than in bronchoalveolar lavage. Vaccinated macaques demonstrated rapid control of virus in bronchoalveolar lavage, and most vaccinated animals also controlled virus in nasal swabs, showing that current vaccines provide substantial protection against Omicron in this model. However, vaccinated animals that had moderate levels of Omicron neutralizing antibodies but negligible Omicron CD8+ T cell responses failed to control virus in the upper respiratory tract. Virologic control correlated with both antibody and T cell responses. ConclusionsBNT162b2 and Ad26.COV2.S provided robust protection against high-dose challenge with the SARS-CoV-2 Omicron variant in macaques. Protection against this highly mutated SARS-CoV-2 variant correlated with both humoral and cellular immune responses.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22270533

RESUMO

The SARS-CoV-2 Omicron variant (B.1.1.529) has three major lineages BA.1, BA.2, and BA.31. BA.1 rapidly became dominant and has demonstrated substantial escape from neutralizing antibodies (NAbs) induced by vaccination2-4. BA.2 has recently increased in frequency in multiple regions of the world, suggesting that BA.2 has a selective advantage over BA.1. BA.1 and BA.2 share multiple common mutations, but both also have unique mutations1 (Fig. 1A). The ability of BA.2 to evade NAbs induced by vaccination or infection has not yet been reported. We evaluated WA1/2020, Omicron BA.1, and BA.2 NAbs in 24 individuals who were vaccinated and boosted with the mRNA BNT162b2 vaccine5 and in 8 individuals who were infected with SARS-CoV-2 (Table S1). O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=61 SRC="FIGDIR/small/22270533v1_fig1.gif" ALT="Figure 1"> O_LINKSMALLFIG WIDTH=200 HEIGHT=79 SRC="FIGDIR/small/22270533v1_fig1a.gif" ALT="Figure 1"> View larger version (26K): org.highwire.dtl.DTLVardef@1b39fc8org.highwire.dtl.DTLVardef@1bf16ceorg.highwire.dtl.DTLVardef@7248ecorg.highwire.dtl.DTLVardef@111a215_HPS_FORMAT_FIGEXP M_FIG O_FLOATNOFigure 1.C_FLOATNO Neutralizing antibody responses to Omicron BA.1 and BA.2. A. Cartoon showing BA.1 and BA.2 mutations in the SARS-CoV-2 Spike. NTD, N-terminal domain; RBD, receptor binding domain; RBM, receptor binding motif; SD1, subdomain 1; SD2, subdomain 2; FP, fusion peptide; HR1, heptad repeat 1; HR2, heptad repeat 2. B. Neutralizing antibody (NAb) titers by a luciferase-based pseudovirus neutralization assay in individuals two weeks following initial BNT162b2 vaccination (Prime), prior to boost (Pre-Boost), and two weeks following the third boost with BNT162b2 (Boost). C. NAb titers in 8 individuals following infection with SARS-CoV-2 Omicron BA.1, of whom 7 were vaccinated. The individual with negative NAb titers was unvaccinated and was sampled 4 days following diagnosis and hospitalization with severe COVID-19 pneumonia. Responses were measured against the SARS-CoV-2 WA1/2020, Omicron BA.1, and BA.2 variants. Medians (red bars) are depicted and shown numerically with fold differences. C_FIG O_TBL View this table: org.highwire.dtl.DTLVardef@a84ecborg.highwire.dtl.DTLVardef@1cd2d42org.highwire.dtl.DTLVardef@1567410org.highwire.dtl.DTLVardef@ddcf54org.highwire.dtl.DTLVardef@56b617_HPS_FORMAT_FIGEXP M_TBL O_FLOATNOTable S1.C_FLOATNO O_TABLECAPTIONStudy population. C_TABLECAPTION C_TBL

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-474743

RESUMO

The SARS-CoV-2 Omicron (B.1.1.529) variant has proven highly transmissible and has outcompeted the Delta variant in many regions of the world1. Early reports have also suggested that Omicron may result in less severe clinical disease in humans. Here we show that Omicron is less pathogenic than prior SARS-CoV-2 variants in Syrian golden hamsters. Infection of hamsters with the SARS-CoV-2 WA1/2020, Alpha, Beta, or Delta strains led to 4-10% weight loss by day 4 and 10-17% weight loss by day 6, as expected2,3. In contrast, infection of hamsters with two different Omicron challenge stocks did not result in any detectable weight loss, even at high challenge doses. Omicron infection still led to substantial viral replication in both the upper and lower respiratory tracts and pulmonary pathology, but with a trend towards higher viral loads in nasal turbinates and lower viral loads in lung parenchyma compared with WA1/2020 infection. These data suggest that the SARS-CoV-2 Omicron variant may result in more robust upper respiratory tract infection but less severe lower respiratory tract clinical disease compared with prior SARS-CoV-2 variants.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22268634

RESUMO

The highly mutated SARS-CoV-2 Omicron (B.1.1.529) variant has been shown to evade a substantial fraction of neutralizing antibody responses elicited by current vaccines that encode the WA1/2020 Spike immunogen1, resulting in increased breakthrough infections and reduced vaccine efficacy. Cellular immune responses, particularly CD8+ T cell responses, are likely critical for protection against severe SARS-CoV-2 disease2-6. Here we show that cellular immunity induced by current SARS-CoV-2 vaccines is highly cross-reactive against the SARS-CoV-2 Omicron variant. Individuals who received Ad26.COV2.S or BNT162b2 vaccines demonstrated durable CD8+ and CD4+ T cell responses that showed extensive cross-reactivity against both the Delta and Omicron variants, including in central and effector memory cellular subpopulations. Median Omicron-specific CD8+ T cell responses were 82-84% of WA1/2020-specific CD8+ T cell responses. These data suggest that current vaccines may provide considerable protection against severe disease with the SARS-CoV-2 Omicron variant despite the substantial reduction of neutralizing antibody responses.

7.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-474336

RESUMO

COVID-19 has forced rapid clinical translation of novel vaccine technologies, principally mRNA vaccines, that have resulted in meaningful efficacy and adequate safety in response to the global pandemic. Notwithstanding this success, there remains an opportunity for innovation in vaccine technology to address current limitations and meet the challenges of inevitable future pandemics. We describe a universal vaccine cell (UVC) rationally designed to mimic the natural physiologic immunity induced post viral infection of host cells. Induced pluripotent stem cells were CRISPR engineered to delete MHC-I expression and simultaneously overexpress a NK Ligand adjuvant to increase rapid cellular apoptosis which was hypothesized to enhance viral antigen presentation in the resulting immune microenvironment leading to a protective immune response. Cells were further engineered to express the parental variant WA1/2020 SARS-CoV-2 spike protein as a representative viral antigen prior to irradiation and cryopreservation. The cellular vaccine was then used to immunize non-human primates in a standard 2-dose, IM injected prime + boost vaccination with 1e8 cells per 1 ml dose resulting in robust neutralizing antibody responses (1e3 nAb titers) with decreasing levels at 6 months duration. Similar titers generated in this established NHP model have translated into protective human neutralizing antibody levels in SARS-Cov-2 vaccinated individuals. Animals vaccinated with WA1/2020 spike antigens were subsequently challenged with 1.0 x 105 TCID50 infectious Delta (B.1.617.2) SARS-CoV-2 in a heterologous challenge which resulted in an approximately 3-log order decrease in viral RNA load in the lungs. These heterologous viral challenge results reflect the ongoing real-world experience of original variant WA1/2020 spike antigen vaccinated populations exposed to rapidly emerging variants like Delta and now Omicron. This cellular vaccine is designed to be a rapidly scalable cell line with a modular poly-antigenic payload to allow for practical, large-scale clinical manufacturing and use in an evolving viral variant environment. Human clinical translation of the UVC is being actively explored for this and potential future pandemics.

8.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-466863

RESUMO

mRNA vaccines can be developed and produced quickly, making them attractive for immediate outbreak responses. Furthermore, clinical trials have demonstrated rapid protection following mRNA vaccination. We sought to investigate how quickly mRNA vaccines elicit antibody responses compared to other vaccine modalities. We first examined immune kinetics of mRNA and DNA vaccines expressing SARS-CoV-2 spike in mice. We observed rapid induction of antigen-specific binding and neutralizing antibodies by day 5 following mRNA, but not DNA, immunization. The mRNA vaccine also induced increased levels of IL-5, IL-6 and MCP-1. We then evaluated immune kinetics of an HIV-1 mRNA vaccine in comparison to DNA, protein, and rhesus adenovirus 52 (RhAd52) vaccines with the same HIV-1 envelope antigen in mice. Induction of envelope-specific antibodies was observed by day 5 following mRNA vaccination, whereas antibodies were detected by day 7-14 following DNA, protein, and RhAd52 vaccination. Eliciting rapid humoral immunity may be an advantageous property of mRNA vaccines for controlling infectious disease outbreaks. IMPORTANCEmRNA vaccines can be developed and produced in record time. Here we demonstrate induction of rapid antibody responses by mRNA vaccines encoding two different viral antigens by day 5 following immunization in mice. The rapid immune kinetics of mRNA vaccines can be an advantageous property that makes them well suited for rapid control of infectious disease outbreaks.

9.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-462514

RESUMO

Syrian golden hamsters exhibit features of severe disease after SARS-CoV-2 challenge and are therefore useful models of COVID-19 pathogenesis and prevention with vaccines. Recent studies have shown that SARS-CoV-2 infection stimulates type I interferon, myeloid, and inflammatory signatures similar to human disease, and that weight loss can be prevented with vaccines. However, the impact of vaccination on transcriptional programs associated with COVID-19 pathogenesis and protective adaptive immune responses is unknown. Here we show that SARS-CoV-2 challenge in hamsters stimulates antiviral, myeloid, and inflammatory programs as well as signatures of complement and thrombosis associated with human COVID-19. Notably, single dose immunization with Ad26.COV2.S, an adenovirus serotype 26 vector (Ad26)-based vaccine expressing a stabilized SARS-CoV-2 spike protein, prevents the upregulation of these pathways such that the gene expression profiles of vaccinated hamsters are comparable to uninfected animals. Finally, we show that Ad26.COV2.S vaccination induces T and B cell signatures that correlate with binding and neutralizing antibody responses. These data provide further insights into the mechanisms of Ad26.COV2.S based protection against severe COVID-19 in hamsters. Author SummaryIn this study, we show that vaccination with Ad26.COV2.S protected SARS-CoV-2 challenged hamsters from developing severe COVID-19 disease by attenuating excessive proinflammatory responses, such as IL-6 and IL-1, macrophages and neutrophils signaling. Ad26 vaccination also prevented the upregulation of pathways associated with thrombosis such coagulation and clotting cascades associated with infection, and the transcriptomic profiles of vaccinated animals were largely comparable to control uninfected hamsters. In contrast, SARS-CoV-2 challenged unvaccinated hamsters showed significant increase of these proinflammatory and prothrombotic pathways and significant weight loss compared to vaccinated hamsters.

10.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-462074

RESUMO

Human monoclonal antibody (mAb) treatments are promising for COVID-19 prevention, post-exposure prophylaxis, or therapy. However, the titer of neutralizing antibodies required for protection against SARS-CoV-2 infection remains poorly characterized. We previously described two potently neutralizing mAbs COV2-2130 and COV2-2381 targeting non-overlapping epitopes on the receptor-binding domain of SARS-CoV-2 spike protein. Here, we engineered the Fc-region of these mAbs with mutations to extend their persistence in humans and reduce interactions with Fc gamma receptors. Passive transfer of individual or combinations of the two antibodies (designated ADM03820) given prophylactically by intravenous or intramuscular route conferred virological protection in a non-human primate (NHP) model of SARS-CoV-2 infection, and ADM03820 potently neutralized SARS-CoV-2 variants of concern in vitro. We defined 6,000 as a protective serum neutralizing antibody titer in NHPs against infection for passively transferred human mAbs that acted by direct viral neutralization, which corresponded to a concentration of 20 g/mL of circulating mAb.

11.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-460191

RESUMO

Live oral vaccines have been explored for their protective efficacy against respiratory viruses, particularly for adenovirus serotypes 4 and 7. The potential of a live oral vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), however, remains unclear. In this study, we assessed the immunogenicity of live SARS-CoV-2 delivered to the gastrointestinal tract in rhesus macaques and its protective efficacy against intranasal and intratracheal SARS-CoV-2 challenge. Post-pyloric administration of SARS-CoV-2 by esophagogastroduodenoscopy resulted in limited virus replication in the gastrointestinal tract and minimal to no induction of mucosal antibody titers in rectal swabs, nasal swabs, and bronchoalveolar lavage. Low levels of serum neutralizing antibodies were induced and correlated with modestly diminished viral loads in nasal swabs and bronchoalveolar lavage following intranasal and intratracheal SARS-CoV-2 challenge. Overall, our data show that post-pyloric inoculation of live SARS-CoV-2 is weakly immunogenic and confers partial protection against respiratory SARS-CoV-2 challenge in rhesus macaques. ImportanceSARS-CoV-2 remains a global threat, despite the rapid deployment but limited coverage of multiple vaccines. Alternative vaccine strategies that have favorable manufacturing timelines, greater ease of distribution and improved coverage may offer significant public health benefits, especially in resource-limited settings. Live oral vaccines have the potential to address some of these limitations; however no studies have yet been conducted to assess the immunogenicity and protective efficacy of a live oral vaccine against SARS-CoV-2. Here we report that oral administration of live SARS-CoV-2 in non-human primates may offer prophylactic benefits, but that formulation and route of administration will require further optimization.

12.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-459664

RESUMO

Development of affordable and effective vaccines that can also protect vulnerable populations such as the elderly from COVID-19-related morbidity and mortality is a public health priority. Here we took a systematic and iterative approach by testing several SARS-CoV-2 protein antigens and adjuvants to identify a combination that elicits neutralizing antibodies and protection in young and aged mice. In particular, SARS-CoV-2 receptorbinding domain (RBD) displayed as a protein nanoparticle (RBD-NP) was a highly effective antigen, and when formulated with an oil-in-water emulsion containing Carbohydrate fatty acid MonoSulphate derivative (CMS) induced the highest levels of cross-neutralizing antibodies compared to other oil-in-water emulsions or AS01B. Mechanistically, CMS induced antigen retention in the draining lymph node (dLN) and expression of cytokines, chemokines and type I interferon-stimulated genes at both injection site and dLN. Overall, CMS:RBD-NP is effective across multiple age groups and is an exemplar of a SARS-CoV-2 subunit vaccine tailored to the elderly.

13.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-458247

RESUMO

The successful development of several COVID-19 vaccines has substantially reduced morbidity and mortality in regions of the world where the vaccines have been deployed. However, in the wake of the emergence of viral variants, able to evade vaccine induced neutralizing antibodies, real world vaccine efficacy has begun to show differences across the mRNA platforms, suggesting that subtle variation in immune responses induced by the BNT162b2 and mRNA1273 vaccines may provide differential protection. Given our emerging appreciation for the importance of additional antibody functions, beyond neutralization, here we profiled the postboost binding and functional capacity of the humoral response induced by the BNT162b2 and mRNA-1273 in a cohort of hospital staff. Both vaccines induced robust humoral immune responses to WT SARS-CoV-2 and VOCs. However, differences emerged across epitopespecific responses, with higher RBD- and NTD-specific IgA, as well as functional antibodies (ADNP and ADNK) in mRNA-1273 vaccine recipients. Additionally, RBD-specific antibody depletion highlighted the different roles of non-RBD-specific antibody effector function induced across the mRNA vaccines, providing novel insights into potential differences in protective immunity generated across these vaccines in the setting of newly emerging VOCs.

14.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-456316

RESUMO

The CVnCoV (CureVac) mRNA vaccine for SARS-CoV-2 has recently been evaluated in a phase 2b/3 efficacy trial in humans. CV2CoV is a second-generation mRNA vaccine with optimized non-coding regions and enhanced antigen expression. Here we report a head-to-head study of the immunogenicity and protective efficacy of CVnCoV and CV2CoV in nonhuman primates. We immunized 18 cynomolgus macaques with two doses of 12 ug of lipid nanoparticle formulated CVnCoV, CV2CoV, or sham (N=6/group). CV2CoV induced substantially higher binding and neutralizing antibodies, memory B cell responses, and T cell responses as compared with CVnCoV. CV2CoV also induced more potent neutralizing antibody responses against SARS-CoV-2 variants, including B.1.351 (beta), B.1.617.2 (delta), and C.37 (lambda). While CVnCoV provided partial protection against SARS-CoV-2 challenge, CV2CoV afforded robust protection with markedly lower viral loads in the upper and lower respiratory tract. Antibody responses correlated with protective efficacy. These data demonstrate that optimization of non-coding regions can greatly improve the immunogenicity and protective efficacy of an mRNA SARS-CoV-2 vaccine in nonhuman primates.

15.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-452251

RESUMO

Vaccines against SARS-CoV-2 have been distributed at massive scale in developed countries, and have been effective at preventing COVID-19. Access to vaccines is limited, however, in low- and middle-income countries (LMICs) due to insufficient supply, high costs, and cold storage requirements. New vaccines that can be produced in existing manufacturing facilities in LMICs, can be manufactured at low cost, and use widely available, proven, safe adjuvants like alum, would improve global immunity against SARS-CoV-2. One such protein subunit vaccine is produced by the Serum Institute of India Pvt. Ltd. and is currently in clinical testing. Two protein components, the SARS-CoV-2 receptor binding domain (RBD) and hepatitis B surface antigen virus-like particles (VLPs), are each produced in yeast, which would enable a low-cost, high-volume manufacturing process. Here, we describe the design and preclinical testing of the RBD-VLP vaccine in cynomolgus macaques. We observed titers of neutralizing antibodies (>104) above the range of protection for other licensed vaccines in non-human primates. Interestingly, addition of a second adjuvant (CpG1018) appeared to improve the cellular response while reducing the humoral response. We challenged animals with SARS-CoV-2, and observed a ~3.4 and ~2.9 log10 reduction in median viral loads in bronchoalveolar lavage and nasal mucosa, respectively, compared to sham controls. These results inform the design and formulation of current clinical COVID-19 vaccine candidates like the one described here, and future designs of RBD-based vaccines against variants of SARS-CoV-2 or other betacoronaviruses.

16.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21259918

RESUMO

Interim immunogenicity and efficacy data for the Ad26.COV2.S vaccine for COVID-19 have recently been reported1-3. We describe here the 8-month durability of humoral and cellular immune responses in 20 individuals who received one or two doses of 5x1010 vp or 1011 vp Ad26.COV2.S and in 5 participants who received placebo2. We evaluated antibody and T cell responses on day 239, which was 8 months after the single-shot vaccine regimen (N=10) or 6 months after the two-shot vaccine regimen (N=10), although the present study was not powered to compare these regimens3. We also report neutralizing antibody responses against the parental SARS-CoV-2 WA1/2020 strain as well as against the SARS-CoV-2 variants D614G, B.1.1.7 (alpha), B.1.617.1 (kappa), B.1.617.2 (delta), P.1 (gamma), B.1.429 (epsilon), and B.1.351 (beta).

17.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-448461

RESUMO

The global COVID-19 pandemic has sparked intense interest in the rapid development of vaccines as well as animal models to evaluate vaccine candidates and to define immune correlates of protection. We recently reported a mouse-adapted SARS-CoV-2 virus strain (MA10) with the potential to infect wild-type laboratory mice, driving high levels of viral replication in respiratory tract tissues as well as severe clinical and respiratory symptoms, aspects of COVID-19 disease in humans that are important to capture in model systems. We evaluated the immunogenicity and protective efficacy of novel rhesus adenovirus serotype 52 (RhAd52) vaccines against MA10 challenge in mice. Baseline seroprevalence is lower for rhesus adenovirus vectors than for human or chimpanzee adenovirus vectors, making these vectors attractive candidates for vaccine development. We observed that RhAd52 vaccines elicited robust binding and neutralizing antibody titers, which inversely correlated with viral replication after challenge. These data support the development of RhAd52 vaccines and the use of the MA10 challenge virus to screen novel vaccine candidates and to study the immunologic mechanisms that underscore protection from SARS-CoV-2 challenge in wild-type mice. ImportanceWe have developed a series of SARS-CoV-2 vaccines using rhesus adenovirus serotype 52 (RhAd52) vectors, which exhibits a lower seroprevalence than human and chimpanzee vectors, supporting their development as novel vaccine vectors or as an alternative Ad vector for boosting. We sought to test these vaccines using a recently reported mouse-adapted SARS-CoV-2 (MA10) virus to i) evaluate the protective efficacy of RhAd52 vaccines and ii) further characterize this mouse-adapted challenge model and probe immune correlates of protection. We demonstrate RhAd52 vaccines elicit robust SARS-CoV-2-specific antibody responses and protect against clinical disease and viral replication in the lungs. Further, binding and neutralizing antibody titers correlated with protective efficacy. These data validate the MA10 mouse model as a useful tool to screen and study novel vaccine candidates, as well as the development of RhAd52 vaccines for COVID-19.

18.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21258567

RESUMO

BackgroundCasirivimab and imdevimab (REGEN-COV) markedly reduces risk of hospitalization or death in high-risk individuals with Covid-19. Here we explore the possibility that subcutaneous REGEN-COV prevents SARS-CoV-2 infection and subsequent Covid-19 in individuals at high risk of contracting SARS-CoV-2 by close exposure in a household with a documented SARS-CoV-2-infected individual. MethodsIndividuals [≥]12 years were enrolled within 96 hours of a household contact being diagnosed with SARS-CoV-2 and randomized 1:1 to receive 1200 mg REGEN-COV or placebo via subcutaneous injection. The primary efficacy endpoint was the proportion of participants without evidence of infection (SARS-CoV-2 RT-qPCR- negative) or prior immunity (seronegative) who subsequently developed symptomatic SARS-CoV-2 infection during a 28-day efficacy assessment period. ResultsSubcutaneous REGEN-COV significantly prevented symptomatic SARS-CoV-2 infection compared with placebo (81.4% risk reduction; 11/753 [1.5%] vs. 59/752 [7.8%], respectively; P<0.0001), with 92.6% risk reduction after the first week (2/753 [0.3%] vs. 27/752 [3.6%], respectively). REGEN-COV also prevented overall infections, either symptomatic or asymptomatic (66.4% risk reduction). Among infected participants, the median time to resolution of symptoms was 2 weeks shorter with REGEN-COV vs. placebo (1.2 vs. 3.2 weeks, respectively), and the duration of time with high viral load (>104 copies/mL) was lower (0.4 vs. 1.3 weeks, respectively). REGEN-COV was generally well tolerated. ConclusionsAdministration of subcutaneous REGEN-COV prevented symptomatic Covid-19 and asymptomatic SARS-CoV-2 infection in uninfected household contacts of infected individuals. Among individuals who became infected, REGEN-COV reduced the duration of symptomatic disease, decreased maximal viral load, and reduced the duration of detectable virus. (ClinicalTrials.gov number, NCT04452318.)

19.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21258569

RESUMO

ImportanceEasy-to-administer antiviral treatments may be used to prevent progression from asymptomatic infection to COVID-19 and to reduce viral carriage. ObjectiveEvaluate the efficacy and safety of subcutaneous casirivimab and imdevimab antibody combination (REGEN-COV) to prevent progression from early asymptomatic SARS-CoV-2 infection to COVID-19. DesignRandomized, double-blind, placebo-controlled, phase 3 study that enrolled asymptomatic close contacts living with a SARS-CoV-2-infected household member (index case). Participants who were SARS-CoV-2 RT-qPCR-positive at baseline were included in the analysis reported here. SettingMulticenter trial conducted at 112 sites in the United States, Romania, and Moldova. ParticipantsAsymptomatic individuals [≥]12 years of age were eligible if identified within 96 hours of collection of the index cases positive SARS-CoV-2 test sample. InterventionsA total of 314 asymptomatic, SARS-CoV-2 RT-qPCR-positive individuals living with an infected household contact were randomized 1:1 to receive a single dose of subcutaneous REGEN-COV 1200mg (n=158) or placebo (n=156). Main Outcome(s) and Measure(s)The primary endpoint was the proportion of participants who developed symptomatic COVID-19 during the 28-day efficacy assessment period. The key secondary efficacy endpoints were the number of weeks of symptomatic SARS-CoV-2 infection and the number of weeks of high viral load (>4 log10 copies/mL). Safety was assessed in all treated participants. ResultsSubcutaneous REGEN-COV 1200mg significantly prevented progression from asymptomatic to symptomatic disease compared with placebo (31.5% relative risk reduction; 29/100 [29.0%] vs 44/104 [42.3%], respectively; P=.0380). REGEN-COV reduced the overall population burden of high-viral load weeks (39.7% reduction vs placebo; 48 vs 82 total weeks; P=.0010) and of symptomatic weeks (45.3% reduction vs placebo; 89.6 vs 170.3 total weeks; P=.0273), the latter corresponding to an approximately 5.6-day reduction in symptom duration per symptomatic participant. Six placebo-treated participants had a COVID-19-related hospitalization or ER visit versus none for those receiving REGEN-COV. The proportion of participants receiving placebo who had [≥]1 treatment-emergent adverse events was 48.1% compared with 33.5% for those receiving REGEN-COV, including events related (39.7% vs 25.8%, respectively) or not related (16.0% vs 11.0%, respectively) to COVID-19. Conclusions and RelevanceSubcutaneous REGEN-COV 1200mg prevented progression from asymptomatic SARS-CoV-2 infection to COVID-19, reduced the duration of high viral load and symptoms, and was well tolerated. Trial RegistrationClinicalTrials.gov Identifier, NCT04452318 KEY POINTSO_ST_ABSQuestionC_ST_ABSCan treatment with the anti-SARS-CoV-2 antibody combination REGEN-COV prevent COVID-19 and reduce viral load when given to recently exposed and asymptomatic individuals? FindingsIn this randomized, double-blind, phase 3 trial, subcutaneously administered REGEN-COV 1200 mg significantly reduced progression of asymptomatic SARS-CoV-2 infection to symptomatic infection (ie, COVID-19) by 31.5% compared with placebo. REGEN-COV also reduced the overall population burden of high viral load weeks (39.7% reduction vs placebo; 48 vs 82 total weeks; P=.0010). MeaningIn the current pandemic, utilization of subcutaneous REGEN-COV prevents progression of early asymptomatic infection to COVID-19 and reduces viral carriage.

20.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-444848

RESUMO

Global deployment of vaccines that can provide protection across several age groups is still urgently needed to end the COVID-19 pandemic especially for low- and middle-income countries. While vaccines against SARS-CoV-2 based on mRNA and adenoviral-vector technologies have been rapidly developed, additional practical and scalable SARS-CoV-2 vaccines are needed to meet global demand. In this context, protein subunit vaccines formulated with appropriate adjuvants represent a promising approach to address this urgent need. Receptor-binding domain (RBD) is a key target of neutralizing antibodies (Abs) but is poorly immunogenic. We therefore compared pattern recognition receptor (PRR) agonists, including those activating STING, TLR3, TLR4 and TLR9, alone or formulated with aluminum hydroxide (AH), and benchmarked them to AS01B and AS03-like emulsion-based adjuvants for their potential to enhance RBD immunogenicity in young and aged mice. We found that the AH and CpG adjuvant formulation (AH:CpG) demonstrated the highest enhancement of anti-RBD neutralizing Ab titers in both age groups ([~]80-fold over AH), and protected aged mice from the SARS-CoV-2 challenge. Notably, AH:CpG-adjuvanted RBD vaccine elicited neutralizing Abs against both wild-type SARS-CoV-2 and B.1.351 variant at serum concentrations comparable to those induced by the authorized mRNA BNT162b2 vaccine. AH:CpG induced similar cytokine and chemokine gene enrichment patterns in the draining lymph nodes of both young adult and aged mice and synergistically enhanced cytokine and chemokine production in human young adult and elderly mononuclear cells. These data support further development of AH:CpG-adjuvanted RBD as an affordable vaccine that may be effective across multiple age groups. One Sentence SummaryAlum and CpG enhance SARS-CoV-2 RBD protective immunity, variant neutralization in aged mice and Th1-polarizing cytokine production by human elder leukocytes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...